

Couplings

Model No. Introduction

0	
<u>c</u>	
n.	
fro	
ā.	
្ន	

INDLOGY CO..LTC

А	С	Е		Ø40R	10*10
А	С	Н	- S	Ø32	6*8

F	А	С	E		Ø40R	10*10	Custom Made
F	А	С	н	S	Ø32	6*8	LK
Туре	Material	Axis Fixing	Coupling Model	Length	O.D. / (Jaw Type Option)	Ød1*Ød2	Key way
F: Flexible R: Rigid	A: Aluminum S: Stainless Steel C: Carbon steel	M: Set screw fixing C: Clamping fixing B: 2 Pieces S: Zero backlash type	S: Spiral beam type(for servo motor) M: Spiral beam type (for stepping motor) C: Metal disk with high rigid design H: Metal disk in straight type T: Metal disk in steps type B: Bellows design G: Oldham type - phosphor bronze spacer P: Oldham type - phosphor bronze spacer J: Oldham type - carbon resin spacer J: Oldham type - Black POM spacer N: Oldham type - POM spacer E: Jaw type U: Aluminum spacer	L: Long design S: Short design	 Refer to dimension table to decide the O.D. Jaw Spider options: B: Blue (80 ShoreA) W: White (92 ShoreA) R: Red (98 ShoreA) 	Bore diameter of two sides of the coupling	 LK: left side Ød1 RK: right side Ød2 WK: Both sides (Ød1 & Ød2)

Note : • Material AL, surface in anodized finished.

- Accessories are clamping screws and set screws.
- Shaft dia. Ød1, Ød2 accepted by custom sizes.(Within specified Max. bore dimensions)
- SFT coupling series are all processed in cryogenic treatment.(Refer to P.0453)

Linear Motion Component O Couplings

Couplings Introduction

LK

Product Introduction

- Coupling is a mechanism device, connecting transmission between two shafts and transmitting safety torque.
- Coupling divided into "Flexible type" and "Rigidity type".
- To apply flexible couplings timing in case of power transmission, two shafts are not easy to set in alignment, or to simplify two shafts installation. It contains shock buffer to absorb parallelism, deflection, axial displacement, deviation improvement, and improvement of traditional transmission power, so few deviation would not cause any unusual situation on bearing. It's widly applied to current markets.
- Rigidity coupling is an unit causing non-eccentric, non-deflection, and make two connected shafts fixed in one unit. Users must do the best to have motor running and axis of load in alignment due to high requirement of concentricity, also means of axis has to be calibrated strictly; otherwise, the rotating shaft would be broken caused by mechanism fatigue, also the bearing would be thermal abrasion due to eccentric load, those were brought by continuous vibration of the axis during long term running of the motor. The advantage of rigidity coupling is to transmit transmission torque precisely.

Coupling Selection & Character Comparison

equipment you are going to use.

Coupling Selection & Character Comparison

Screw Fixing Type

Clamp Fixing Type

2-Piece Type

Low Inertial Torque

Torque Range(N-m)

Product Character

.

•

0.3~4

.

•

0.3~2

.

•

0.3~4

Coupling having frequently powerful shaft-combination.
 Having no allowable offset applys to condition in axial side absorbing angular deviation.
 To install lock screw on coupling secures the shaft well.

(4) Max. to continue	(4) Max. torque is double of allowable torque in coupling, and torque produced in continuous rotation shall not exceed to allowable torque.														
	Spiral Beam type														
-	FAMS	FACS	FAMML	FAMMS	FSMML	FSMMS	FACML	FACMS	FSCML	FSCMS					
Coupling		S.	· Mi		·Mi	·	all .	and the	· Ille	all'a					
page	P.12	P.13	P.14	P.15	P.16	P.17	P.18	P.19	P.20	P.21					
Zero Backlash	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent					
High Torque Rigidity	Excellent	Excellent	Good	Good	Good	Good	Good	Good	Good	Good					
High Torque	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good					
Allowable Axis Deviation			Good		Good		Good		Good						
Flexibility			٠		•		•		•						
Complete Miniature	•	•		•		•		٠		٠					
Stainless Steel					•	•			•	٠					
Constant Velocity															
Screw Fixing Type	•		•	•	•	•									
Clamp Fixing Type		•					•	•	•	•					
Allowable Angular Deflection	•	•	•	•	•	•	•	•	•	•					
Allowable Parallel Offset	•	•	•	•	•	•	•	•	•	•					
Low Inertial Torque	•	•	•	•	•	•	•	•	•	•					
Torque Range(N·m)	0.5~3	0.5~3	0.1~4	0.1~8	0.1~8	0.1~4	0.4~8	0.4~4	0.4~8	0.4~4					
Product Character		 Coupling slitted Difference of ma Due to zero bac 	in aluminum or sta aterial and beam ty klash required in h	ainless steel mater pes cause variation	ial is as structure a on in transmitting to acy, meanwhile, po	as spiral beam type orque and allowabl osition accuracy me	e allowable offset. e offset. eets the same requ	uirement.							

(1) Coupling is a mechanism unit used in transmitting torque and rotating angle. Each model is purposed. Please select as your requirement from the table below. (2) Take spec and hole size on the list for reference to select product you need.

(3) Confirm rated torque, Max. speed and dimension of selected coupling matched with the

	Oldham type						Jaw	type		(Large shaft diameter use)	Zero Backlash ty	ype(Spindle use)
		FACPL	FACPS	FAMN	FACU	FAME	FAMK	FACE	FACK	FACE	FASE	FCSE
	Flexible Coupling		S.		1.3	· ···	.7.		.7.	0,151	OF D	
	Page	P.38	P.39	P.40	P.41	P.45	P.46	P.47	P.48	P.49	P.50	P.50
	Zero Backlash				Good	Good	Good	Good	Good	Good	1 Zero rotation backlash	1 Zero rotation backlash
Se C	High Torque Rigidity	Good	Good	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	2. Hight torsion	2. Hight torsion
Itage	High Torque	Excellent	Good	Good	Good	Excellent	Excellent	Excellent	Excellent	Excellent	3. High torque	3. High torque
mpa	Allowable Axis Deviation	Excellent	Excellent	Excellent	Good	Good	Good	Good	Good	Good	4. Low Inertia	4. Low Inertia
ĕ S	Vibration Absorbability	Good	Good	Good		Good	Good	Good	Good	Good	5. High rigidity 6. Variation resistance	5. High rigidity 6. Variation resistance
	Isolation	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	7. High fricition	7. High fricition
	Flexibility					٠	٠	٠	٠	•	8. Intergrated clamping	8. Intergrated clamping
	Complete Miniature	٠	•	•							nut for bolt assembly	nut for bolt assembly
	Screw Fixing Type			•		٠	•				easily	easily
	Clamp Fixing Type	٠	•		٠			٠	٠	•		
than	Key Way Type						•		٠	•		
	Allowable Angular Deflection	•	•	•	•	•	•	•	•	•		
	Allowable Parallel Offset	•	•	•	•	•	•	•	•	•		
	Low Inertial Torque	•	•	•	•	•	•	•	•	•		
	Torque Range(N⋅m)	0.7~9	0.2~2.8	0.7~9	0.3~6	0.7~17	4~17	0.7~17	4~17	60~190	 Usage temperature: -20°C ~ 90°C 	 Usage temperature: -20°C ~ 90°C
	Product Character	 Oldham Jaw type 	type Fe (E Lig an Pr to Pr an as	w friction r x: braking r ght torque o gular devia ess-in type make diffe ess-in type d equippeo well.	esistance, a mechanism, corresponds titon. • of the PU i rence of vib • applied in I d with good	apply to brain relay shfat) to larger particular nsert; select ration absort ow torque n adjustment	king system arallel offse t hardness bability tec nakes zero of vibration	t and through Po hnically. backlash, absorbabil	lyurethane	 Usage temperature: -20°C - 90°C Offset of angular and axial deviation are individual allowed values. Thus, the coupling unit allowable value will be reduced in case couple reasons of axial offset appearing at the same time. Available to make key ways on request. Refer to P.2 for Key way 	 Unser of anguar and avaid deviation are individual allowed values. Thus, the coupling unit allowed by value wal- of avaid offset appearing at the same time. No rotation backlash, high accuracy clamping prestress design. Light aluminum shaft bushing offers small inertia. Tight clamping force to bring high finition moment. Stable incidion to parform a high 	 Unser or anguar and basid deviation are individual allowed values. Thus, the coupling unit allowable value will be reduced in case couple reasons of axial offiser appearing at the same time. No rotation basklash, high accuracy clamping presenses design. Tight clamping force to bring high findiom moment. Stable rotation to perform a high linear speed Amis.

		Metal D	Disk type	9			Bellov	vs type				Oldha	am typ	е	
FACCL	FACCS	FACHL	FACHS	FACTL	FACTS	FAMB	FSMB	FACB	FSCB	FSMG	FSCG	FSMP	FSCP	FAMJ	FACJ
()	3	i.		D:	9	5	. Infi	1	· ME	1	1	T.	0).	S.
P.22	P.23	P.24	P.25	P.26	P.27	P.28	P.29	P.30	P.31	P.32	P.33	P.34	P.35	P.36	P.37
Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent						
Excellent	Good	Excellent	Excellent	Good	Good	Good	Good	Good	Good	Excellent	Excellent	Good	Good	Good	Good
Good	Good	Good	Excellent	Good	Good	Good	Good	Good	Good	Excellent	Excellent	Good	Good	Good	Good
Good		Good		Good		Good	Good	Good	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent
•		•		•											
	•		•		•]					
							•		•						
						•	•	•	•	•		•		•	
						•		•			•		•		•
•	•	•	•	•	•		•		•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
1.2~25	1.2~25	0.7~9	0.7~9	2~10	2~10	0.3~2	0.5~3	0.3~2	0.5~3	3~50 3~50 0.3~28 1.6~18 30~80 26~72					
 Due to ze meets the Widely rar and mater 	ro backlash requ same requirem ges from standa ials for disc.	vired in rotation a ent. rd to high torque	accuracy, mear	while, position ac	curacy f dimesnions					 Jaw type 	ani Pre thr vib Pre zer adj	d angular de ess-in type o ough Polyur ration absoi ess-in type a o backlash, ustment of	viation. If the PU ins ethane to m bability tech applied in lo and equipp vibration abs	sert; select h nake differen nnically. w torque ma ed with goo sorbability a	nardness ice of ikes d s well.
Riq Co	Rigidity Coupling				RA	ics	RSCS		RAB	RSB RACL				RSC	
	Page P.53 P.54		P.t	55	P.56		P.57	P.5	B	P.59	9	P.60			
Zero	Backlash	Excell	ent	Excellent	Exc	ellent	Excellent	E	xcellent	Exce	llent	Exce	llent	Excel	lent
High Ri	gidity Torque	Excel	ent	Excellent	Exo	ellent	Excellent	E	xcellent	Exce	llent	Exce	llent	Excel	lent
Hig	h Torque	Goo	d	Good	G	bod	Good		Good	Go	od	Go	bd	Goo	d
Stair	aless Steel				1										

.

٠

0.3~2

•

•

•

0.3~2

•

•

0.3~2

•

•

0.3~2

•

•

0.3~2

요 www.sflinear.com.tw

www.sflinear.com.tw

Product Introduction

Linear Motion Component O Couplings

Fixing

- (1) There are five ways to fix coupling onto shaft as below. Please select coupling as your demand.
- (2) Set screw or clamping screw (hexagonal countersink screw) shall be secured by screw driver or torque wrench.Securing torque refer to product specifications.

Set Screw Fixing

This fixing in low cost is the most traditional. Front of screw contacting with shaft directly may cause damage or difficult disassembly.

Clamping Fixing

Use sink screw securing to narrow the slit for clamping shaft tightly. Clamped fix and easy disassembly won't cause damage of shaft.

Separation Fixing

Use separated bushings to fix and disassemble without moving your equipment.

Key Way Fixing

This type is also traditonal, like set screw fixing, suits for transmission in higher torque. Prevent from parallel movement, it's usually used with set screw fixing and clamp fixing together.

Zero Backlash Type

Zero backlash type coupling is designed to be equipped high precision clamping nut as one unit, performs high friction moment and reliable movement which is suitable for spindle transmission of the machine. Linear Motion Component O Couplings

Installation

To maintain installation completeness of all kinds of couplings, it's recommended to install as follow charts to avoid direct contact of two shafts and to have a regular run.

Oldham Type

Bellows Type

Spiral Beam Type

Metal Disk Type

Rigidity Coupling

Zero Backlash Type

Deviation Adjustment

Linear Motion Component Couplings

Coupling - Deviation Adjustment

- (1) Flexible coupling transmits torque and rotation angle, and absorb deviation from shaft installation. It may cause vibration or shortening life hours of coupling, while deviation is over allowed range. Thus, make sure and take perfect adjustment for deviaiton.
- (2) There are three deviation for shaft, as parallel deviation, angular deviation and axial deviation. Please adjust deviation lower than allowed range listed in the product spec offered by our catalog.
- (3) The max. allowable deviation listed in our catalog is in case of only one deviation existing. While two or more deviation existing at same time, allowable range shall be lower than 1/2 x max. deviation listed in the spec of catalog.
- (4) Deviaiton happened not only on equipment installation, but caused by vibration in running progress, heated expansion, bearing abrasion. Thus, it's recommended to adjust axial deviation lower than 1/3 x Max. range.

A B A#B

Torque

In physics, torque is defined as "force in vertical" x "distance to rotating center", metric unit (N·m), divided by acceleration of gravity 9.8m/ sec², unit could be converted to famillar (kg-m). Imperial unit lb-ft, in case of conversion to metric unit, just take lb-ft divided by 7.22. Torque we called is not force unit, but a kind of the moment of force, which means capacity of energy transforming, We could see the connection from normal unit used in calculating torque (Kgm), and generally judging from words: Kgm stands for the capacity of rising an object weighed 1 kg in 1 meter movement. This is a kind of the moment of force, so inappropriate to call it force. Motor producing force per time unit is decided by RPM and torque of motor, and REC out shown in motor, (W) shown in Japan, (HP) power output shown in USA and Europe. (1HP=746w=0.746kw)

Coupling - Allowed Torque

Transmitted torque occurs in allowed speed range rotating continuously.

Max. Torque in Driven Side

Max. torque in driven side being hitted in the moment, ex: torque produced while breaking.

Allowable Angular (Deflection)

The deflection between two shafts while connecting two shafts.

Allowable Axial Deviaiton Displacement

Displacement caused in axial while connecting two shafts.

Inertial Torque

It's not easy to change running status of object with big mass (whether from static to running or running to static); equally, rotating inertial or inertial torque is to show keeping object in running status, bigger inertia torque makes tough rotation.

Static Torsional Stiffness

Required (N \cdot m) to rotate 1 radian.

Product Introduction

Product Introduction

Motor Reference

Motor

Induction Motor

- (1) More than triple torque occurs in case of running momently.
- (2) Shaft axis center of the motor has ±1.5mm movement back and forth while running, and it's not recommended to use spiral beam type.
- (3) DC motor could be used in working environment with dust.

Stepping Motor

- (1) Without triple torque in case of running momently, but max. rated torque of motor occurs.
- (2) Larger torque in low speed than servo motor in same level.
- (3) Higher RPM, smaller torque in motor.
- (4) Motor have temperature rise in case of running continuously. (to improve by using disk type coupling) * Force output in stepping motor is smaller than servo motor.

Servo Motor

- (1) More than triple torque occurs in case of running momently.
- (2) Under rated RPM range, cause rated torque.
- (3) Same torque produce in low speed and high speed
- (4) Temperature rise is small in case of running continuously.

Encoder

- (1) Built-in in servo motor, has tiny driven torque.
- (2) Or connected to stepping motor. (optional)

Product Introduction

Rigidity Standard

Bellows type - Rigidity Standard

Spiral Beam Type - Rigidity Standard

High torque rigidity, light and complete miniature.

FAMMS FACMS

FAMML

FACML

These flexible couplings apply to servo motor.

Torque rigidity and flexibility -Balance acquired among incompatible functions. These flexible couplings apply to stepping motor.

Character Comparison

Zero backlash.

parallel, and axial misalignment.

Flexible | Spiral Beam Coupling

· Rotation character of clockwise or anti-clockwise are exactly the same.

• The flexure allowed by the beam portion of the couping is capable of accommodating angular,

Material	Surface Finish	Accessories
Aluminum Alloy	Anodized	Set screw

Dimens	ions	C 11		Ød2													_	
Model No.	ØD	1 201	5	6	6.35	7	8	9.525	10	11	12	14	15	16			F	IVI
	40	5	•	•											47.4	6	0	
	10	6		•											117.4	0	3	3
		5	•	•		•	•											
		6		•	•	•	•											
	19	6.35			•		•								20	6.8	3.4	3
		8					•		•									
		10							•									
		6		•					•									
		6.35			•		•		•									
		7					•									8.5	4.25	4
FAMS	24	8					•	•	•						25			
	24	9.525							•						23			
		10							•	•	•							
		11									•							
		12									•							
		8					•		•	•	•							
	20	10							•	•	•	•			20	10.2	51	4
	23	11									•	•			50	10.2	0.1	-
		12									•	•						
		10										•						
		11										•						
	34	12									•	•		•	35	12	6	5
		14										•	•	•	00	12		5
		15											•	•				
		16												•				

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable Wrench	Allowa	able Misa	lignment	Static Torsional	Max.	* Moment	Screw Fixing	* Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	(r/min ⁻¹)	(kg·m²)	Torque (N⋅m)	(g)
	16	0.5				200	24000	2.8*10 ⁻⁷	0.7	7
	19	1			±0.1	270	20000	6.2*10 ⁻⁷	0.7	10
FAMS	24	1.5	0.5	0.05		790	16000	2.0*10 ⁻⁶	47	22
	29	2				1400	13000	5.2*10 ⁻⁶	1.7	40
	34	3				2200	11000	1.1*10 ⁻⁵	4	64

100 PCS

Linear Motion Component O Couplings

Zero backlash.

Flexible | Spiral Beam Coupling

• The flexure allowed by the beam portion of the coupling is capable of accommodating

· Offset, deflection, shaft deviation are individual allowed value, so couple reasons of axial offset

· Rotation character of clockwise or anti-clockwise are exactly the same.

appearing at same time would reduce the unit allowable value.

*Ød3=Ød2+0.5

angular, parallel, and axial misalignment.

· Free maintenance, oil-resist and anti-corrosiveness.

Material	Surface Finish	Accessories
Aluminum Alloy	Anodized	Clamping screw

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable	Allowa	wable Misalignment		Static Torsional	Max.	* Moment	Screw Fixing	* Weight	
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N⋅m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	Torque (N⋅m)	(g)	
-	16	0.5			±0.1	200	9500	2.5*10 ⁻⁷	0.5	7	
	19	1				270	8000	5.8*10 ⁻⁷	0.5	12	
FACS	24	1.5	0.5	0.05		790	6300	1.8*10 ⁻⁶	4	23	
_	29	2]			1400	5200	4.7*10 ⁻⁶	I	41	
	34	3]			2200	4400	1.1*10 ⁻⁵	1.5	62	

SF TECHNOLOGY CO..LTD

com.tw

Linear Motion Component O Couplings

Flexible | Spiral Beam Coupling

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable Wrench	Allowa	able Misalignment		Static Torsional	Max.	* Moment	Screw Fixing	★ Weight
Model No.	ØD	Torque (N⋅m)	(°)	(mm)	(mm)	Stiffness (N⋅m/rad)	(r/min ⁻¹)	(kg·m²)	Torque (N⋅m)	(g)
	8	0.1			±0.2	25	48000	1.2*10 ⁻⁸	0.3	1.4
	12	0.4		0.10	±0.3	45	32000	8.3*10 ⁻⁸	0.5	3.7
	16	0.5	2	0.10	±0.4	80	24000	3.3*10 ⁻⁷	0.7	8.1
FAMML	20	1				170	19000	9.0*10 ⁻⁷	0.7	14
	25	2]	0.15		380	15000	2.6*10 ⁻⁶	17	27
	32	4		0.15	±0.5	500	12000	9.6*10 ⁻⁶		60
	40	8		0.20		600	9600	3.2*10 ⁻⁵	4	130
Ordering E	Example:	FAMML2	5 10	* 12	100 PCS					

 FAMML25
 10
 12
 100 PCS

 Model no.
 Ød1
 Ød2
 Q'ty

Linear Motion Component O Couplings

Flexible | Spiral Beam Coupling

*Ød3=Ød2+0.5 *When Ød1 < 4 and Ød2 > 5, there would be 3 set screws. When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Material	Surface Finish	Accessories
Aluminum Alloy	Anodized	Set screw

Dimens	ions	0141					Ø	d2						14	NA	_
Model No.	ØD	Ødi	2	3	4	5	6	7	8	10	12	14	L		IVI Rough thread	F
	8	2	•										10	31	2	17
	0	3		•									10	3.4	2	1.7
	12	4			•	•							1/	52	25	25
	12	5				•							14	J.2	2.0	2.5
	16	5				•	•						10	6.9		
	10	6					•						10	0.0		
	20	5					•	•	•						3	3
		6					•						20	7.65		
FAMMS		8												1.00		
		5														
1		6							•	•						
	25	6.35											25	9.6		4
1		8							•	•]			
		10													4	
		8							•	•						
	32	10											32	12.6		6
		12										•				

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable Wrench	Allowable	Misalignment	Static Torsional	Max.	* Moment	Screw Fixing	★ Weight
Model No.	D. ØD Torque Ang (N·m) (Angular (°)	Axiai (mm)	Stiffness (N·m/rad)	(r/min ⁻¹)	of Inertia (kg⋅m²)	Torque (N·m)	(g)
	8	0.1		+0.1	24	48000	1.0*10 ⁻⁸	0.3	1
	12	0.4		10.1	80	32000	7.0*10 ⁻⁸	0.5	3.1
EANING	16	0.5	1		180	24000	2.8*10 ⁻⁷	0.7	7.4
FAIVIIVIS	20	1	1	±0.2	200	19000	7.5*10 ⁻⁷	0.7	12
	25	2			780	15000	2.3*10 ⁻⁶	17	24
	32	4			1100	12000	8.0*10 ⁻⁶	1.1	50

Ordering Example:	FAMMS25	8	* 10	100 PCS
	Model no.	Ød1	Ød2 -	Q'ty

www.sflinear.com.tw

Flexible | Spiral Beam Coupling

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable Wrench	Allowa	ble Misalio	gnment	Static Torsional	Max.	★ Moment	Screw Fixing	★ Weight	
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Axial Stiffness RPM (mm) (N·m/rad) (r/min ⁻¹)		of Inertia (kg⋅m²)	Torque (N⋅m)	(g)	
	8	0.2			±0.2	50	48000	3.1*10 ⁻⁸	0.3	3	
	12	0.3		0.10	±0.3	64	32000	2.1*10 ⁻⁷	0.5	9.3	
	16	0.5		0.10		85	24000	8.4*10 ⁻⁷	0.7	21	
FSMML	20	1	2			250	19000	2.4*10 ⁻⁶	0.7	38	
	25	2		0.15 ±0.4	0.15	±0.4	330	15000	6.8*10 ⁻⁶	17	71
	32	3.5]		+0.5	850	12000	2.6*10 ⁻⁵	1.7	160	
	40	8	0.20		±0.0	1000	9600	9.7*10 ⁻⁵	4	350	
		501414									

FSMML25 8 10 100 PCS ering Examp Model no. Ød1 Ød2 Q'ty

Linear Motion Component O Couplings

Product Specification

Flexible | Spiral Beam Coupling

*Ød3=Ød2+0.5 *When Ød1 < 4 and Ød2 > 5, there would be 3 set screws. When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Material	Accessories
SUS303	Set screw

Dimens	ions	Ød1					Ø	d2						14	М	E
Model No.	ØD	bui	2	3	4	5	6	7	8	10	12	14			Rough thread	Г
	8	2	•										10	34	2	17
	Ŭ	3											10	0.1	-	
	12	4			•	•							14	52	25	2.5
		5												0.2	2.0	2.0
	16	5											18	6.8		
		6											10	0.0		
		5					•	•	•						3	3
FSMMS	20	6					•	•	•				20	7.65		
		8							•							
		5					•									
		6					•		•	•						
	25	6.35											25	9.6		4
		8							•	•					4	
		10													- T	
		8														
	32	10											32	12.6		6
		12									•	•				

*Moment of inertial torque and weight calculated by maximum diameter.

Specific Model No.	øD	Allowable Wrench Torque (N·m)	Allowable M Angular (°)	lisalignment Axial (mm)	Static Torsional Stiffness (N·m/rad)	Max. RPM (r/min ⁻¹)	★ Moment of Inertia (kg·m ²)	Screw Fixing Torque (N·m)	★ Weight (g)
	8	0.2			49	48000	2.4*10 ⁻⁸	0.3	2.7
	12	0.3		.0.1	140	32000	1.8*10 ⁻⁷	0.5	7.8
FSMMS	16	0.5	1	±0.1	240	24000	7.2*10 ⁻⁷	0.7	18
	S 20 1] '		330	19000	2.0*10 ⁻⁶	0.7	32	
	25 2		+0.2	720	15000	6.1*10 ⁻⁶	17	63	
	32	3.5			1300	12000	2.1*10 ⁻⁵		130

Ordering Example:	FSMMS25	8	10	100 PCS
	Model no.	Ød1	Ød2	Q'ty

com.tw

FACML

Product Specification

Linear Motion Component O Couplings

Ød1H8

Flexible | Spiral Beam Coupling

. The flexure allowed by the beam portion of the couping is capable of accommodating angular parallel, and axial misalignment. Rotation character of clockwise or anti-clockwise are exactly the same. · Free maintenance, oil-resist and anti-corrosiveness. · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial

offset appearing at same time would reduce the unit allowable value.

Ma Alumir

*Ød3=Ød2+0.5

iterial	Surface Finish	Accessories
um Alloy	Anodized	Clamping screw

Dimens	sions							Ø	ðd2											
Model No.	ØD	Ød1	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	L	L1	M Rough thread	A	F
	12	4	•	•												18.5	5	2	4	2.5
		5																-		2.0
	16	5		•	•											23	6.5		5	3.25
	10	6			•											-		-		
		5			•	•	•	•								-		2.5		
	20	6			•	•	•	•								26	7.5		6.5	3.75
	20	6.35				<u> </u>										-				
-		8																	9	4.25
		5														-				
	25	6				•				•						-				
		6.35				L		•		•						21	9.5	2		
FACML		8						•	•	•						31	8.5	3		
		9.525														1				
		10								•										
		8							•			•								
	32	9.525										•				41	12	4	11	6
	02	10									•	•					1.2	·		ľ
		12										•								
		8						•		•										
		10								•										
	40	12										•	•			56	17	6	14	0 5
	-10	14											٠		•	50	17	5	14	4 8.5
		15												٠						
		16													•	1				

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable Wrench	Allowa	ble Misalio	gnment	Static Torsional	Max.	* Moment	Screw Fixing	★ Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	Torque (N·m)	(g)
	12	0.4			±0.3	45	12000	7.8*10 -8	0.5	3.6
	16	0.5		0.10	.0.4	80	9500	3.4*10 ⁻⁷	4	9.2
EACM	20	1	2		±0.4	170	7600	9.1*10 ⁻⁷		16
FACIVIL	25	2	2			380	6100	2.6*10 ⁻⁶	1.5	28
	32	4]	0.15	±0.5	500	4800	9.7*10 ⁻⁶	2.5	64
	40	8		0.20		600	3800	3.3*10 -5	4	140

Example:	FACML32		10		12		1
Example.	Madalaa	1.1	CX-14	14	040	-	

Model no. Ød1 Ød2 Q'ty

Linear Motion Component O Couplings

SF TECHNOLOGY CO..LTD

Flexible | Spiral Beam Coupling

*Ød3=Ød2+0.5

Material	Surface Finish	Accessories
Aluminum Alloy	Anodized	Clamping screw

Dimens	ions	Ød1						м	•	-					
Model No.	ØD	bui	4	5	6	7	8	10	12	14	L	LI	IVI Rough thread	A	Г
	10	4		•							14	5.0	2	4	26
	12	5		•							14	5.2	2	4	2.0
	40	5		•							10	6.0		F	2.4
	16	6			•						10	0.0		5	5.4
	20	5					•						2.5	6.5	
		6			•	•	•				20	7.65			3.8
FACMS		8					•								
		5			•										
	05	6			•		•	•			05				4.0
	25	8					•	•			25	9.6	3	9	4.8
		10						•							
		8					•	•							
	32	10						•	•	•	32	12.6	4	11	6.3
		12							•	•					

Specific	cation	Allowable	Allowable N	lisalignment	Static	Max.	★ Moment	Screw	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	Torque (N·m)	(g)
	12	12 0.4 16 0.5		±0.1	80	12000	6.4*10 ⁻⁸	0.5	3
	16				180	9500	2.9*10 ⁻⁷		8
FACMS	20	1	1		200	7600	7.5*10 ⁻⁷	1	13
	25	2		±0.2	780	6100	2.3*10 ⁻⁶	1.5	25
	32	4			1100	4800	8.1*10 ⁻⁶	2.5	53

8 10 Model no. Ød1 Ød2 Q'ty

FSCML

Product Specification

Linear Motion Component O Couplings

and axial misalignment.

Flexible | Spiral Beam Coupling

 Rotation character of clockwise or anti-clockwise are exactly the same. Free maintenance, oil-resist and anti-corrosiveness. · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. 203 -Fi-Iød1H8 \bigcirc ⊚ *Ød3=Ød2+0.5 *1pc clamping screw in ØD12~DØ32 of stainless steel type. Material Accessories Clamping screw SUS303 Dimensions Ød2 Ød1 L1 Μ А F Model No. ØD 8 9.525 10 11 12 14 15 4 6 6.35 7 16 5 4 • 12 18.5 5 2 4 2.5 5 . 5 • 16 23 6.5 5 3.25 6 • 5 • • • • 2.5 6 • • • • 20 26 7.5 6.5 3.75 6.35 8 5 • 6 • 6.35 9 25 31 8.5 3 4.25 FSCML 8 ٠ • 9.525 10 • 8 • • • • 9.525 • • 32 41 12 4 11 6 10 • • • • 12 • • 8 • ٠ 10 12 • 40 56 17 5 14 8.5 14 ٠ • 15 • 16 ٠

*Moment of inertial torque and weight calculated by maximum diameter.

. The flexure allowed by the beam portion of the couping is capable of accommodating angular, parallel,

Specific	Specification Allowable Allowable Misalignm		gnment	Static Torsional	Max.	* Moment	Screw Fixing	★ Weight		
Model No.	ØD	D Torque Angular Parallel Axial (N·m) (°) (mm) (mm)		Stiffness (N·m/rad)	(r/min ⁻¹)	of Inertia (kg·m ²)	Torque (N⋅m)	(g)		
	12	0.3			±0.2	64	12000	2.2*10 ⁻⁷	0.5	10
	16	0.5]	0.10	±0.3	85	9500	9.0*10 ⁻⁷	1	25
ESCM	20	1	2			250	7600	2.5*10 ⁻⁶		43
FSCIVIL	25	2	2	0.15	±0.4	330	6100	7.1*10 ⁻⁶	1.5	78
	32	3.5		0.15	+0.5	850	4800	2.7*10 ⁻⁵	2.5	170
	40	8	0.20		±0.5	1000	3800	9.0*10 ⁻⁵	4	370

Linear Motion Component O Couplings

. Zero backlash.

and axial misalignment.

· No accommodating to parallel misalignment.

Free maintenance, oil-resist and anti-corrosiveness.
 FSCMS can't allow axial deviation caused by offset

. High wrench torque rigidity and sensitivity.

Product Specification

Flexible | Spiral Beam Coupling

FSCMS

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial

• The flexure allowed by the beam portion of the couping is capable of accommodating angular,

· Rotation character of clockwise or anti-clockwise are exactly the same.

*Ød3=Ød2+0.5 *1pc clamping screw in ØD12~DØ32 of stainless steel type.

Material	Accessories
SUS303	Clamping screw

Dimens	sions	Ød1	Ød1 Ød2								-				
Model No.	ØD		4	5	6	7	8	10	12	14	L	L1	M Rough thread	A	F
	10	4	•	•								5.0	-		0.0
	12	5									14	5.2	2	4	2.6
	16	5		•	•						10	6.0		F	2.4
	10	6			•						18	6.8		5	3.4
		5			•	•	•						2.5		
	20	6			•	•	•				20	7.65		6.5	3.8
FSCMS		8					•								
		5			•										
	25	6			•		•	•			25	9.6	3	q	4.8
	25	8					•	•			20	0.0	Ŭ		4.0
		10						•							
		8					•	•							
	32	10						•	•	•	32	12.6	12.6 4		6.3
		12							•	•					

Specific	cation	Allowable Wrench	Allowable M	isalignment	Static Torsional	Max.	* Moment	Screw Fixing	★ Weight
Model No.	ØD	Torque (N⋅m)	(°)	(mm)	(N·m/rad)	(r/min ⁻¹)	(kg·m²)	l orque (N⋅m)	(g)
	12	0.3		+0.1	140	12000	1.8*10 ⁻⁷	0.5	8.5
	16	0.5	0.5		240	9500	7.8*10 ⁻⁷	1	21
FSCMS	20	1	1		330	7600	2.1*10 ⁻⁶	I	36
	25	2		±0.2	720	6100	6.3*10 ⁻⁶	1.5	69
	32	3.5			1300	4800	2.2*10 ⁻⁵	2.5	150

Ordering Example:	FSCMS25	- 6	8	100 PCS
	Model no.	Ød1 *	Ød2	Q'ty

FACCL

Product Specification

Flexible | Disk Coupling

High wrench torque load, high wrench torque rigidity capacity and excellent sensibility.
 Zero backlash.
 The flexure allowed by the stainless steel disk portion of the couping is capable of accommodating angular, parallel, and axial misalignment.
 Clockwise character is exactly the same as anti-clockwise one.
 Free maintenance, oil-resist and anti-corrosiveness.

Free maintenance, oil-resist and anti-corrosiveness.
 Teethless screw to lock disks.

 Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value.

			00ZH8
--	--	--	-------

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Disk	SUS303	_	Clamping Screw

Dimens	sions			\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2														l .	11	Δ	F	Clampi	ng screv
Model No.	ØD	4	5	6	8	9	10	11	12	14	15	17	19	20	22	24	25	L	LI	A	F	М	Lock torqu (N·m)
	21	•	•	•	•	•												24.5	7	7	3.5	M2.5	1.2
	28		•	•	•	•	•											32	9	9.5	4	M3	1.5
FACCL	34			•	•	•	•	•	•	•								35	9.8	12	5	M3	1.5
	46				•	•	•	•	•	•	•	•	•					44	12.6	16.5	6	M4	3.5
	55								•	•	•	•	•	•	•	•	•	55	16	20.5	7	M5	6

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable Wrench	Allowa	ble Misali	gnment	Static Torsional	Max.	* Moment	*Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N⋅m/rad)	(r/min ⁻¹)	of Inertia (kg·m²)	(g)
	21	1.2	1.0	0.10		1000		1.11*10 ⁻⁶	17
	28	1.6	1.2	0.15	±0.20	1300		4.68*10 ⁻⁶	42
FACCL	34	4		0.20		2800	10000	1.10*10 -5	65
	46	10	1.5	0.25	.0.20	6200		4.70*10 ⁻⁵	151
	55	25		0.25	±0.30	12000		1.19*10 ⁻⁴	260

ample: FACCL46 10 12 100 PCS

Model no. Ød1 Ød2 Q'ty

Linear Motion Component O Couplings

Flexible | Disk Coupling

FACCS

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Disk	SUS303	_	Clamping Sciew

Dimens	ions				Ç	Ød18	&Ød2	2 sele	ectior	י ו	Ød1	≦ Ø	íd2					1	14		_	Clampir	ng screw
Model No.	ØD	4	5	6	8	9	10	11	12	14	15	17	19	20	22	24	25	L	LI	A	F	М	Lock torque (N·m)
	21	•	•	•	•	•												16.7	7	7	3.5	M2.5	1.2
	28		•	•	•	•	•											21	9	9.5	4	M3	1.5
FACCS	34			•	•	•	•	•	•	•								23.3	9.8	12	5	M3	1.5
	46				•	•	•	•	•	•	•	•	•					29.8	12.6	16.5	6	M4	3.5
	55								•	•	•	•	•	•	•	•	•	37.2	16	20.5	7	M5	6

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable	Allowable	Misalignment	Static Torsional	Max.	★ Moment	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)
	21	1.2	1.0		1500		7.90*10 ⁻⁷	12
	28	1.6	1.2	±0.10	1800		3.24*10 ⁻⁶	30
FACCS	34	4			3600	10000	7.60*10 ⁻⁶	45
	46	10	1.5	+0.15	10000		3.23*10 ⁻⁵	105
	55	25		±0.15	20000		8.19*10 -5	180

Ordering Example:	FACCS34		10		14		100 PCS
	Model no.	-	Ød1	ľ	Ød2	-	Q'ty

Flexible | Disk Coupling

Product Specification

FACHL

- · High wrench torque load, high wrench torque rigidity capacity and excellent sensibility. Zero backlash.
- The flexure allowed by the stainless steel disks portion of the couping is capable of accommodating angular, parallel, and axial misalignment.
- Clockwise character is exactly the same as anti-clockwise one.
- Free maintenance, oil-resist and anti-corrosiveness. · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial
- offset appearing at same time would reduce the unit allowable value.

Linear	Motion	Component	C	Couplinas
Linour	101011011	Componioni		Coupinigo

Flexible | Disk Coupling

FACHS

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Disk	SUS301	_	Clamping Sciew

Dimens	ions					Ø	ðd1a	\$Ø	d2 s	elec	tion	*	Ød1	≦	Øď	2								14	-	^	Clampi	ng screw
Model No.	ØD	4	4.5	5	6	6.35	7	8	9.525	10	11	12	14	15	16	17	18	19	20	22	24	25	L	20 8	F	A	М	Lock torque (N·m)
	19	•	•	•	•	•	•	•															20	8	2.5	6.5	2	0.5
	25				•	•	•	•	•	•	•	•											24	10	3.5	9	2.5	1
FACHS	32							•	•	•	•	•	•	•									29	12	4	11	3	1.5
	40							•	•	•	•	•	•	•	•	•	•	•	•				33	14	5	15	4	2.5
	50												•	٠	•	•	•	٠	٠	•	•	•	42	18	6	18	5	7

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allowable	Misalignment	Static Torsional	Max.	★ Moment	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	19	0.7			280	10000	6.3*10 ⁻⁷	9
	25	1			630	8000	2.1*10 -6	19
FACHS	32	2.5	0.7	±0.2	1600	6000	7.2*10 -6	41
	40	3.5			2600	5000	1.3*10 ⁻⁵	68
	50	9			3100	4000	6.1*10 ⁻⁵	140

Ordering Example:	FACHS40	10	* 12	100 PCS
	Model no.	Ød1	Ød2	Q'ty

SF TECHNOLOGY CO..LTD

Component Material Surface Finish Accessories Main frame Aluminum Alloy Anodized Clamping screw Disk SUS301 _

Dimens	sions						Ød	1&0	Ød2	sel	ecti	on	*0	ðd1	≦	Øď	2							14	42	A E	E	Clampi	ng screv
Model No.	ØD	4	4.5	5	6	6.35	7	8	9.525	10	11	12	14	15	16	17	18	19	20	22	24	25		LI	us	A		М	Lock torqu (N·m)
	19	•	•	•	•	•	•	•															27	8	8.5	6.5	2.5	2	0.5
	25				•	•	•	•	•	•	•	•											31	10	12.5	9	3.5	2.5	1
FACHL	32							•	•	•	•	•	•	•									40	12	16	11	4	3	1.5
	40							•	•	•	•	•	•	•	•	•	•	•	•				44	14	21	15	5	4	2.5
	50												•	•	•	•	•	•	•	•	•	•	57	18	26	18	6	5	7

Specific	cation	Allowable Wrench	Allowa	ble Misaliç	gnment	Static Torsional	Max.	* Moment	* Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	(r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	19	0.7		0.12		200	10000	8.7*10 ⁻⁷	18
	25	1]	0.12		450	8000	2.7*10 ⁻⁶	25
FACHL	32	2.5	1.5		±0.5	1100	6000	9.6*10 ⁻⁶	60
	40	3.5]	0.15		1400	5000	1.9*10 ⁻⁵	100
	50	9]			2200	4000	8.1*10 ⁻⁵	210

mole.	FACHL40	10		12	100 PCS	
impic.	Model no.	Ød1	~	Ød2	Q'ty	

Flexible | Disk Coupling

FACTL

· High wrench torque load, high wrench torque rigidity capacity and excellent sensibility. · Zero backlash. • Dual stainless steel rings to correct radial > angular and axial deviation.

- · Clockwise character is exactly the same as anti-clockwise one.
- Free maintenance, oil-resist and anti-corrosiveness. · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value.

Linear I	Motion	Component	0	Couplings
----------	--------	-----------	---	-----------

ØD1

Ød1H8

Flexible | Disk Coupling

FACTS

 Hard torque load
 high torque rigidity and excellent sensibility. Zero backlash. · Miniature coupling has short length. Dual stainless steel disk to correct angular and axial deviation. · No correction for radial deviation. · Clockwise character is exactly the same as anti-clockwise one. • Free maintenance, oil-resist and anti-corrosiveness. · FACH-S can't allow axial deviation caused by offset. · Offset, deflection, shaft deviation are individual allowed value.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Disk	SUS301	—	

Dimens	sions			\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2									1	14	1.2	A	F	Clampii	ng screw			
Model No.	ØD	וטש	6	7	8	10	11	12	14	15	16	18	19	20	25	L	LI	LZ	A	Г	М	Lock torque (N·m)
	32	22	•	•	•	•										32	13.7	9	8	4	3	1.5
EACTO	40	28		•	•	•	•	•	•							38	16.5	12	10.5	6	4	2.5
FACIS	50	39						•	•	•	•	•	•	•		44	19.4	15	14.8	7	5	7
	63	45								•	•	•	•	•	•	50	22.3	18	17	8	6	12

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allowable	Misalignment	Static Torsional	Max.	* Moment	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)
	32	2			1300	4800	4.5*10 ⁻⁶	38
FACTO	40	4		.0.0	2800	3800	1.2*10 ⁻⁵	66
FACIS	50	7.5		±0.2	3700	3100	3.7*10 ⁻⁵	120
	63	10			5000	2400	8.4*10 ⁻⁵	190

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	
Disk	SUS301	_	Clamping Screw

Dimens	mensions \emptyset d1& \emptyset d2 selection $*\emptyset$ d1 $\leq \emptyset$ d2											14	10	Δ	E	Clamping scre						
Model No.	ØD	וטש	6	7	8	10	11	12	14	15	16	18	19	20	25		LI	LZ	A	F	М	Lock torq (N·m)
	32	22	•	•	•	•										40	13.7	9	8	4	3	1.5
FAOTI	40	28		•	•	•	•	•	•							46	16.5	12	10.5	6	4	2.5
FACIL	50	39						•	•	•	•	•	•	•		52	19.4	15	14.8	7	5	7
	63	45								•	•	•	•	•	•	58	22.3	18	17	8	6	12

Specification		Allowable	Allowa	ble Misali	gnment	Static Torsional	Max.	★ Moment	* Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	32	2		0.15	±0.4	1000	4800	6.2*10 ⁻⁶	48
	40	4	2	0.2	±0.5	1500	3800	1.6*10 ⁻⁵	81
FACIL	50	7.5		0.2	±0.6	2000	3100	4.6*10 ⁻⁵	150
	63	10		0.3	±0.8	2500	2400	1.1*10 ⁻⁴	230

Flexible | Bellows Coupling

FAMB

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial

offset appearing at same time would reduce the unit allowable value.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Sot scrow
Bellows	C5191	_	Gersciew

Dimens	sions		\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2										11	E	Set screw	
Model No.	ØD	3	4	5	6	6.35	8	9.525	10	12	14		LI		М	Lock torque (N·m)
	12	•	•	•	•	•						23.5	7.5	2.5	2.5	0.5
	16		•	•	•	•	•					26.5	9	3		0.7
FAMB	20			•	•	•	•	•	•			32	10	3.5	3	0.7
	25				•	•	•	•	٠	•		36.5	12	4.5	4	4.7
	32				•	•	•	•	•	•	•	42	13.5	5.5	4	1.7

$\bigstar Moment of inertial torque and weight calculated by maximum diameter.$

Specific	cation	Allowable	Allo	wable Misa	alignment	Static Torsional	Max.	★ Moment	🔹 Weight	
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)	
	12	0.3	15	0.10	+0.4	82	32000	9.0*10 ⁻⁸	4	
	16	0.5	1.5	0.10	-1.2	110	24000	3.5*10 ⁻⁷	9	
EAND	20	0.8		0.15	+0.6	180	19000	9.9*10 ⁻⁷	16	
FAMB	25	1.3	2	0.15	-1.8	240	15000	3.1*10 ⁻⁶	32	
	32	2		0.20	+0.8 -2.5	330	12000	9.2*10 ⁻⁶	57	

Ordering Example: FAMB20 6 8 100 PCS Model no. Ød1 Ød2 Q'ty

Flexible | Bellows Coupling

FSMB

*When Ød1<4 and Ød2>5, there would be 3 set screws. *When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Component	Material	Accessories
Main frame	SUS303	Setscrew
Bellows	SUS316	Corsciew

Dimens	sions		\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2										14	_	Set screw		
Model No.	ØD	3	4	5	6	6.35	8	9.525	10	12	14		LI	F	М	Lock torque (N·m)	
	12	•	•	•	•	•						23.5	7.5	2.5	2.5	0.5	
	16		•	•	•	•	•					26.5	9	3		0.7	
FSMB	20			•	•	•	•	•	•			32	10	3.5	3	0.7	
	25				•	•	•	•	•	•		36.5	12	4.5	4	4.7	
	32				•	•	•	•	•	•	•	42	13.5	5.5	4	1.7	

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ation	Allowable	All	owable Mis	alignment	Static	Max.	★ Moment	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)
	12	0.5	4.5	0.40	+0.4	100	32000	2.1*10 ⁻⁷	9
	16	1	1.5	0.10	-1.2	150	24000	8.0*10 ⁻⁷	20
	20	1.5		0.45	+0.6	220	19000	2.3*10 ⁻⁶	37
FSMB	25	2	2	0.15	-1.8	330	15000	7.0*10 ⁻⁶	73
32		3	2	0.20	+0.8 -2.5	490	12000	2.1*10 ⁻⁵	130

SF TECHNOLOGY CO..LTD

^{*}When Ød1<4 and Ød2>5, there would be 3 set screws. *When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Flexible | Bellows Coupling

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value.

FACB

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	
Bellows	C5191	_	Clamping Sciew

2-M

Dimer	isions		Ç	Ød1&Ø	0d2 sel	ection	*Ød1	$\leq \text{Ød}$	2			14	F		Clampir	ng screw
Model No	. ØD	4	5	6	6.35	8	9.525	10	12	14		LI	Г	A	М	Lock torque (N·m)
	12	•	•								23.5	7.5	2.3	4	2	0.5
	16	•	•	•	•						26.5	9	3	5	0.5	
FACB	20		•	•	•	•					32	10	3.5	6.5	2.5	1
	25			•	•	•	•	•			36.5	12	4.5	9	3	1.5
	32					•	•	•	•	•	42	13.5	5	11	4	2.5

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allov	wable Misa	lignment	Static	Max.	★ Moment	* Weight						
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)						
	12	0.3	1 5	0.10	+0.4	82	13000	9.7*10 ⁻⁸	4						
	16 0.5		1.5	0.10	-1.2	110	9500	3.7*10 ⁻⁷	10						
FACE	20	0.8		0.15	+0.6	180	7700	1.0*10 ⁻⁶	16						
FACE	25	1.3	1.3	1.3	1.3	1.3	1.3	1.3	2	0.15	-1.8	240	6100	3.1*10 ⁻⁶	32
	32	2	2	0.20	+0.8 -2.5	330	4800	9.6*10 ⁻⁶	58						

Linear Motion Component O Couplings

Flexible | Bellows Coupling

Component	Material	Accessories
Main frame	SUS303	Clamping screw
Bellows	SUS316	Clamping Screw

Dimens	ions		Ç	Ød1&@	0d2 sel	ection	*Ød1	$\leq \text{Ød}$	2			14	F	^	Clampir	ng screw
Model No.	ØD	4	5	6	6.35	8	9.525	10	12	14			F	A	М	Lock torque (N·m)
	12	•	•								23.5	7.5	2.3	4	2	0.5
	16	•	•	•	•						26.5	9	3	5	0.5	
FSCB	20		•	•	•	٠					32	10	3.5	6.5	2.5	1
	25			•	•	•	•	•			36.5	12	4.5	9	3	1.5
	32					•	•	•	•	•	42	13.5	5	11	4	2.5

Specific	cation	Allowable	All	owable Mis	alignment	Static Torsional	Max.	🖈 Moment	🖈 Weiaht				
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)				
	12	0.5	4.5	0.40	+0.4	100	13000	2.1*10 ⁻⁷	9				
	16		1.5	0.10	-1.2	150	9500	8.1*10 ⁻⁷	22				
FROD	20	1.5		0.15	+0.6	220	7700	2.3*10 ⁻⁶	38				
FSCB	25	2	2	2	2	2	2	0.15	-1.8	330	6100	6.9*10 ⁻⁶	74
	32	3	2	0.20	+0.8 -2.5	490	4800	2.1*10 ⁻⁵	130				

Flexible | Oldham Coupling

Product Specification

FSMG

- rotation numbers
- Available options for key way per inner diameter is bigger than 6mm. (Refer to page 42)

FSMGLK (key way Ød1 side) FSMGRK (key way Ød2 side) FSMGWK (key way Ød1 and Ød2 side)

Component	Material	Accessories
Main frame	SUS303 Alloy	Sotoorow
Spacer	Aluminum bronze	Gersciew

Dimen	sions			\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2															~~~		14	_	Set	screw
Model No.	ØD	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	20	ספן	וטש	003		LI		М	Lock torqu (N·m)
	15	•	•	•	•	•	•										14.5	15	7.2	16	5.4	2.6	3	0.7
	17		•	•	•	•	•										16.8	17.5	8.2	19.8	6.7	3.2		
	20			•	•	•	•	•	•	•	•						20	21	9	21.6	7	3.4	4	17
FSMG	26			•	•	•	•	•	•	•	•	•					26	27	12	25.6	9	4		
	30						•		•		•	•					30	31	14	33	12	6		
	34								•	•	•	•	•	•			34	35	14	34	13	5.5	5	10
	38								•		•	•	•	•	•	•	38	41	17	39.5	15	7		4.0

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allov	wable Misal	ignment	Static Torsional	Max.	★ Moment	* Weight													
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)													
	15	3		0.5	±0.1	800	8000	4*10 ⁻⁸	15													
	17	5		0.5	±0.1	1000	7000	1*10 ⁻⁷	25													
	20	7	1.5	0.5	±0.1	2200	6000	2*10 ⁻⁶	37													
FSMG	26	10		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0.8	±0.2	4000	5000	6*10 ⁻⁶	79					
	30	30											1				1	±0.3	5500	5000	2.5*10 ⁻⁵	120
	34	32												1	±0.2	8000	4000	4*10 ⁻⁵	180			
	38	50		1	±0.3	11000	4000	1*10 ⁻⁴	256													

Linear Motion Component O Couplings

Flexible | Oldham Coupling

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. Suit for high wrench torque, high rotation.

. In case of parallel deviation over 0.1, abrasion of the insert is direct ration to load torque, offset, and rotation numbers.

Available options for key way per inner diameter is bigger than 6mm. (Refer to page 42)

Ød1

Øds

FSCGLK (key way Ød1 side) FSCGRK (key way Ød2 side) FSCGWK (key way Ød1 and Ød2 side)

 \oplus

Component	Material	Accessories
Main frame	SUS303 Alloy	Clamping corow
Spacer	Aluminum bronze	Clamping screw

Dimens	sions				Ød1	1&Ø	d2	selec	tion	*0	ðd1	$\leq Q$	ðd2						apo	<i>a</i>		14	_	-	Clampi	ng screw
Model No.	ØD	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	20	םש	וטש	200	600		LI	A	г	М	Lock torque (N·m)
	15	•	•	•													14.5	15	16	7.2	18.4	6.6	4.5	3.2	2.5	1.0
	17		•	•	•												16.8	17.5	19	8.2	24.4	9	5	4	3	1.8
	20			•	•	•	•	•	•								20	21	23	9	27.2	10	7	4.5		1.0
FSCG	26			•	•	•	•	•	•	•	•						26	27	29	12	30.4	11.5	8.4	5	4	3.0
	30						•		•		•	•					30	31	32	14	33	12	9	6	4	4.5
	34								•	•	•	٠	•	•			34	35	37	17	34	13	11	0	-	
	38								•		•	•	•	•	•	•	38	41	41	17	39.5	15	13.7	7	5	0.0

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	All	owable Mis	alignment	Static	Max.	* Moment	🔹 Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)
	15	3		0.5	±0.1	800	8000	6*10 ⁻⁷	17
	17	5		0.5	±0.1	1000	7000	1.2*10 ⁻⁶	30
	20	7		0.5	±0.1	2200	6000	3*10 ⁻⁶	48
FSCG	26	10	1.5	0.8	±0.2	4000	5000	1*10 ⁻⁵	90
	30	30		1	±0.3	5500	5000	2.5*10 ⁻⁵	120
	34	32		1	±0.2	8000	4000	4*10 ⁻⁵	172
	38	50		1	±0.3	11000	4000	1*10 ⁻⁴	246

SF TECHNOLOGY CO..LTD

Мо

Product Specification

Linear Motion Component O Couplings

Flexible | Oldham Coupling

FSMP

														-			·		,								_	
		۷* s	Vher mall	n Øc er tl	l1 ar han -	nd Ø 4. th	0d2 iere	bot	h uld	F	SMF	PWK	(key	way	Ød [.]	1 and	dØd	2 sid	e)	N	lain fr	ame	SU	S303	Alloy		Sot cor	0.00
		b	e 2	set	scre	ws.															Spac	er	Ca	rbon ı	resin]	361 301	ew
Dimens	sions				Ø	d18	Ød	2 se	electi	ion	*(Ød1	\leq	Øď	2								a		14	_	Set s	crew
lodel No.	ØD	1	1.5	2	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	20	ספ	ויםש	Ø03	L	LI	F	М	Lock torqu (N·m)
	6	•	•	•																	6	6.2	2.4	8.4	3	1.5	1.0	0.45
	8	•		•	•																8	8.2	3.4	9.6	3.5	1.7	1.0	0.15
	10			•	•	•															10	10.2	4.4	10.2	3.7	1.8	2	0.3
	12				•	•	٠														12	12.5	4.0	14.2	5.2	2.5	2	0.7
	15					•	٠	•	•	•	٠										14.5	15	5.0	16	5.4	2.6	3	0.7
FSIVIP	17						•	•	•	•	•										16.8	17.5	7.2	19.8	6.7	3.2		
	20									٠	٠	٠	•	•							20	21	8.2	21.4	7	3.4	4	17
	26							•	•	•	•	•	•	•	•	•					26	27	12.0	25.6	9	4	-	1.7
	30										٠		•			•					30	31	13.0	33	12	6		
	34												•	•	•	•	•	٠			34	35	13.0	34.2	13	5.5	5	10
	38												٠		٠	•	٠	٠	٠	٠	38	41	17.0	40	15	7	3	4.0

*Moment of inertial torque and weight calculated by maximum diameter.

Accessories

Specific	cation	Allowable	Allov	wable Misa	lignment	Static	Max.	* Moment	★ Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	6	0.3		0.3	±0.25	9		1.5*10 ⁻⁸	1.5
	8	0.5		0.4	±0.3	13	10000	2.2*10 ⁻⁸	2.5
	10	0.8		0.4	±0.32	21	12000	3.6*10 ⁻⁸	4
	12	1		0.5	±0.35	44		1.6*10 ⁻⁷	8
	15	1.6		0.8	±0.45	90	10000	3.5*10 ⁻⁷	11
FSMP	17	2.2	3	1	±0.55	250	10000	7.8*10 ⁻⁷	18
	20	3.2		1.5		340	8000	1.7*10 ⁻⁶	29
	26	6	1	2		420	6500	6.2*10 ⁻⁶	65
	30	15		2	±0.6	1200	6200	2*10 ⁻⁵	100
	34	16	1	2.5		2400	6000	2.5*10 ⁻⁵	155
	38	28		2.5		3500	5800	8*10 ⁻⁵	240

Linear Motion Component O Couplings

Flexible | Oldham Coupling

Operating temperature : -40°C~90°C

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. • FSCP lock torque of clamping screw is 5.4 (N · m) based on shaft dia (Ød1, Ød2) over Ø16. Available options for key way per inner diameter is bigger than 6mm. (Refer to page 42)

FSMPLK (key way Ød1 side) FSMPRK (key way Ød2 side) FSMPWK (key way Ød1 and Ød2 side)

 \oplus

Component	Material	Accessories
Main frame	SUS303 Alloy	Clamping scrow
Spacer	Carbon resin	Clamping Sciew

Dimens	ions				Ø	d18	Ød	2 se	lecti	ion	*Ø	ðd1	≦ (Ød2				aD4	apa	a lo		14		-	Clampi	ng screw
Model No.	ØD	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	20	סש	יטש	002	Ø 0 3		LI	A	F	М	Lock torque (N·m)
	15	•	•	•													14.5	15	16	5.0	18.4	6.6	4.5	3.2	2.5	1.0
	17		•	•	•												16.8	17.5	19	7.2	24.4	9	5	4	3	1.8
	20			•	•	•	•	•	•								20	21	23	8.2	27.2	10	7	4.5		1.0
FSCP	26			•	•	•	•	•	•	•	•						26	27	29	12	30.4	11.5	8.4	5	4	3.0
	30						•		•		•	•					30	31	32	13	33	12	9	0	4	4.5
	34								•	•	•	•	•	•			34	35	37	13	34	13	11	6	_	
	38								•		•	•	•	•	•	•	38	41	41	17	40	15	13.7	7])	8.0

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	All	owable Mis	alignment	Static Torsional	Max.	🖈 Moment	🖈 Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Axial (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)
	15	1.6		0.8	±0.45	90	10000	5.0*10 ⁻⁷	15
	17	2.2		1	±0.55	250	10000	1.0*10 ⁻⁶	28
	20	3.2		1.5		340	8000	2.4*10 ⁻⁶	40
FSCP	26	6	3	2		420	6500	8.0*10 ⁻⁶	85
	30	15		2	±0.6	1200	6200	2.0*10 ⁻⁵	100
	34	16		25		2400	6000	2.5*10 ⁻⁵	155
	38	18		2.0		3500	5800	8.0*10 ⁻⁵	240

©FSMP&FSCP spacer selection, please refer to P.42 FSCP26

10 12

Model no. Ød1 Ød2 Q'ty

100 PCS

Flexible | Oldham Coupling

FAMJ

 Operating temperature : -20°C~80°C · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. • Available options for key way per inner diameter is bigger than 6mm. (Refer to page 43)

L1

11

 \oplus

ol H8

FAMJLK(key way Ød1 side) FAMJRK (key way Ød2 side) FAMJWK (key way Ød1 and Ød2 side)

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Sot scrow
Spacer	Black (POM)	_	Sersciew

Dimen	sions			Ød18	kØd2	selecti	on *	Ød1	≦ Ød2	2				ada		14	E	Set	t screw
Model No.	ØD	14	15	16	18	20	22	25	26	28	30	35	38	003	L			М	Lock torque (N·m)
	44	•	•	•	•	•	•							22.5	46	15	7.5	6	7.0
FAMJ	55				•	•	•	•	•					28	57	19	9.5	8	15.0
	70						•	•		•	•	•	•	39	77	25	12.5	10	30.0

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allowable N	lisalignment	Static	Max.	* Moment	* Weight
Model No.	ØD	Torque (N·m)	Angular (°)	Parallel (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	44	30		1	1500	12000	4*10 ⁻⁵	140
FAMJ	55	45	2	1.5	2800	10000	11*10 ⁻⁵	260
	70	80		2	4800	8000	40*10 ⁻⁵	450

Linear Motion Component O Couplings

Flexible | Oldham Coupling

Operating temperature : -20°C~80°C

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. · Select bigger lock torque of clamping screw than listed values on catalogs when shaft diameter is too small.

· List torque tightness values are only for general standard.

• Available options for key way per inner diameter is bigger than 6mm. (Refer to page 43)

FACJLK (key way Ød1 side) FACJRK (key way Ød2 side) FACJWK(key way Ød1 and Ød2 side)

Φ

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	
Spacer	Black (POM)	1	Clamping screw

Dimens	sions		\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2									Ød3		14	F	Δ	Clamp	ing screw
Model No.	ØD	14	15	16	18	20	22	25	28	30	35	Dus		LI	Г	A	М	Lock torque (N·m)
	44	٠	•	•	٠	٠						22.5	46	15	7.5	14.5	5	*8.4
FACJ	55				•	٠	•	٠				28	57	19	9.5	17	6	*14.4
	70						•	•	•	•	•	39	77	25	12.5	24	8	*30.0

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allowable I	Visalignment	Static	Max.	★ Moment	🖈 Weiaht
Model No. Ø	ØD	Torque	Angular	Parallel	Stiffness	RPM	of Inertia	(g)
		(N·m)	(°)	(mm)	(IN-m/rad)	(r/min)	(Kg·m²)	
	44	26		1	1500	12000	4*10 ⁻⁵	140
FACJ	55	40	2	1.5	2800	10000	11*10 ⁻⁵	260
	70	72		2	4800	8000	40*10 ⁻⁵	450

©FAMJ&FACJ spacer selection, please refer to P.43

Model no. Ød1 Ød2 Q'ty

% www.sflinear.com.tw

ød3 ød1H8

• Operating temperature : -20°C~80°C

Flexible Oldham Coupling

· Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial

offset appearing at same time would reduce the unit allowable value.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	
Spacer	(POM)	_	Clamping Sciew

Dimen	sions				Ød1a	&Ød2	2 sele	ection	*Ø	d1 ≦	Ød2				Maa	L	11	т	E	_	Clamp	ing screw
Model No.	ØD	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	Dus	L		1		A	Μ	Lock torqu (N·m)
	16	•	•	•											7	29	13	3	2	5	25	
	20		•	•	•	•	•								9	33	14	5	3	6.5		
FACPL	25			•	•	•	•	•	•						11	39	17	5	3.8	9	3	1.5
	32						•	•	•	•	•	٠			14.5	45	19	7	4.5	11	4	2.5
	40										•	•	•	•	17	50	23	4	7	13	5	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable Wrench	Allowable M	lisalignment	Static Torsional	Max.	* Moment	★ Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m²)	(g)
	16	0.7		1.0	31	9500	5.8*10 ⁻⁷	12
	20	1.2 2 3		1.5	60	7600	1.5*10 ⁻⁶	19
FACPL	25			2.0	140	6100	4.4*10 ⁻⁶	36
	32	4.5		2.5	280	4800	1.4*10 ⁻⁵	69
	40	9		3.0	540	3800	4.1*10 ⁻⁵	130

Linear Motion Component O Couplings

Flexible Oldham Coupling

 Operating temperature : -20°C~80°C · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value.

Component	Material	Surface Finish	Accessories
Main frame	AL 7075	Anodized	
Spacer	(POM)	_	Clamping Screw

Dimens	ions			Q	Ød1&0	ðd2 se	electio	n *Ø	Ød1 ≦	Ød2				0 40		14	F	Δ	Clampi	ing screw
Model No.	ØD	3	4	5	6	6.35	7	8	9.525	10	11	12	14	003	L	LI	Г	A	М	Lock torque (N·m)
	12	•	•	•										6	14.9	5	2.5	4	2	0.5
FACPS	16	•	•	•	•									8	21	7	35	5	25	1
	20			•	•	•	•	•						10	22	22 7 3	5.5	6.5	2.5	
	25					•	•	•	•	٠				14	27.2	8	4	9	3	1.5
	32						•	•	•	•	•	•	•	18	33.3	10	5	11	4	2.5

*Moment of inertial torque and weight calculated by maximum diameter.

Specifi	cation	Allowable	Allowable M	lisalignment	Static	Max.	★ Moment	★ Weight
Model No.	ØD	Torque Angular (N·m) (°)		Parallel (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)
	12	0.2		0.6	9	13000	7.1*10 ⁻⁸	3
	16	0.4		1.0	30	9500	3*10 ⁻⁷	8
FACPS	20	0.7 2		1.3	47	7600	7.4*10 ⁻⁷	13
	25	1.2	1.2		85	6100	2.2*10 ⁻⁶	24
	32	2.8		2.0	190	4800	7.3*10 ⁻⁶	48

© FACPL&FACPS spacer selection, please refer to P.44

			, թ			
dering Example:	FACPS25		8	10	100 PCS	
	Model no.	-	Ød1	Ød2	Q'ty	

SF

SF TECHNOLOGY CO.,LTD

Flexible | Oldham Coupling

Product Specification

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Sot corow
Spacer	(POM)	_	SetSciew

Dimens	ions				Ød1	&Ød2	2 sele	ction	*Ø	d1 ≦	Ød2					- Ød3 L		1.4	т	E	Se	t screw
Model No.	ØD	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	003	L	LI	1	F	М	Lock torqu (N·m)
	16	•	•	•	•	•										7	18	7	4	3.5	3	0.7
	20		•	•	•	•	•	•								9	23	9	5	4.5	4	1.7
FAMN	25			•	•	•	•	•	•	•						11	28	11	6	5.5	5	4
	32							•	•	•	•	•	•			14.5	33	13	7	6.5	6	7
	40							•	•	•	•	•	•	•	•	17	32	14	4	7	0	· /

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable	Allowable M	isalignment	Static Torsional	Max.	★ Moment	★ Weight
Model No.	ØD	Torque (N⋅m)	Angular (°)	Parallel (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg·m ²)	(g)
	16	0.7		1.0	31	9500	3.2*10 ⁻⁷	7
	20	1.2		1.5	60	7600	1.0*10 ⁻⁶	14
FAMN	25	2 3		2.0	140	6100	3.0*10 ⁻⁶	27
	32	32 4.5		2.5	280	4800	9.5*10 ⁻⁶	50
	40	9		3.0	540	3800	2.3*10 -5	80

Linear Motion Component O Couplings

Flexible | Oldham Coupling

· Offset of angular, parallel, or axial deviation are individual value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value. Suitable applied for high torque rigidity and low vibration needs.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	
Spacer	Aluminum Alloy	Anodized	
Pin	SUJ-2	_	Clamping screw
Bearing	Aluminum + Teflon	_	

Dimens	ions			Ød1	&Ø	d2 s	elect	tion	*	Ød1	≦ !	Ød2						0 40		14	Δ	F	Clampi	ng screw
Model No.	ØD	3	4	5	6	8	10	11	12	14	15	16	18	19	20	עש	וספ	ba3	L	LI	A	Г	М	Lock torque (N·m)
	15	•	•	•	•											15	16	\searrow	18	6	5.2	2.5	M2	0.5
	20		•	•	•	•										20	22	4	20	7	6.5	2.7	M2	0.5
	25			٠	٠	٠	٠	•	٠							25	27	7	27	9	9	3.5	M2.5	1
FACU	30				•	•	•	•	•	•						30	32	8	30	9.5	10.5	4	M3	1.5
	35					•	•	•	٠	•	•	•				35	37	13	35	11.5	12.5	5	M4	2.5
	40					•	•	•	•	•	•	•	•	•	•	40	42	13	40	12.5	15	5.5	M4	2.5

*Moment of inertial torque and weight calculated by maximum diameter.

Specif	ication	Allowable Wr	rench Torque	Allowable N	lisalignment	Static	Max.	* Moment	* Woight
Model No.	ØD	Rated torqe (N·m)	Max. torqe (N·m)	Angular (°)	Parallel (mm)	Stiffness (N·m/rad)	RPM (r/min ⁻¹)	of Inertia (kg⋅m²)	(g)
	15	0.3	0.6			200	42000	2.3*10 ⁻⁷	8
	20	0.6	1.2]		400	31000	8.1*10 ⁻⁶	16
-	25	1.2	2.4	1	0.2	900	25000	2.7*10 ⁻⁶	33
FACU	30	2.4	4.8		0.2	1300	21000	6.2*10 ⁻⁵	53
	35	4	8	1		2200	18000	1.3*10 ⁻⁵	81
	40	6	12	1		2300	4000	2.6*10 ⁻⁵	120

Ordering Example:	FACU25		10		12		100 PCS	
	Model no.	-	Ød1	25	Ød2	-	Q'ty	

SF TECHNOLOGY CO.,LTD

b www.sflinear.com.tw

Oldham Spacer | Black Carbon Resin

FS-PC

SFT

SF TECHNOLOGY CO.,LTD

Space	r					Materi	al : carbon resin
Dime	nsions		т	Ød3	W	7	Coupling
Model No.	ØD	001		Dus	vv	2	Coupinig
	6	6.2	2.2	2.4	1.3	1.3	FSMP6
	8	8.2	2.4	3.4	1.6	1.5	FSMP8
	10	10.2	2.6	4.4	1.6	1.6	FSMP10
	12	12.5	3.8	4.0	3	1.8	FSMP12
	15	15	4.8	5.0	3.4	2.3	FSMP15 FSCP15
	17	17.5	6	7.2	4.6	2.9	FSMP17 FSCP17
F3-FC	20	21	6.6	8.2	5.8	3.2	FSMP20 FSCP20
	26	27	7	12.0	7	4	FSMP26 FSCP26
	30	31	8.5	13.0	7	4	FSMP30 FSCP30
	34	35	7	13.0	7	4	FSMP34 FSCP34
	38	41	9.5	16.0	7	4	FSMP38 FSCP38

• W dimension is made in strict standard, and inter-inlaid adjustment.

FS-PC 26 Model no. ØD

(Reference for FSMG, FSCG, FSMP, FSCP)

Shaft dia.	v	v	ŀ	Kou dimonsiona W/*H		
Ød1 · Ød2	Datum dimension	Allowable Tolerance	Datum dimension	Allowable tolerance		
6~7.9	2	.0.0125	1.0		2*2	
8~10	3	±0.0125	1.4		3*3	
10.1~12	4		1.8	+0.1	4*4	
12.1~17	5	±0.0150	2.3	0	5*5	
17.1~20	6		2.8		6*6	

Linear Motion Component O Couplings

Oldham Spacer | Black POM

 Space 	Spacer Material : Polyacetel (POM)											
Dimensions			т	(742)	147	7	Coupling					
Model No.	ØD	וטש	I	003	VV	2	Coupling					
	11	44.2	14	22.5	10.4	0	FAMJ44					
	44	44.5	14	22.5	10.4	9	FACJ44					
FS-PP		F FF	47	20	12	11	FAMJ55					
	55	55	17	28	13	11	FACJ55					
	70	60	25	00	15	16 5	FAMJ70					
	70	69	25	- 39	15	10.5	FACJ70					

ød3

ØD1

(Reference for FAMJ, FACJ)

Shaft dia.	١	N	ł	4	Ver dimensione M/#11	
Ød1 · Ød2	Ød1 · Ød2 Datum dimension		Datum dimension	Allowable tolerance		
14~17	5	.0.0150	2.3	+0.1	5*5	
17.1~22	6	±0.0150	2.8	0	6*6	
22.1~30	8	10.0190	2.2	+0.2	8*7	
30.1~38	10	±0.0100	3.3	0	10*8	

SF

SF TECHNOLOGY CO.,LTD

Linear Motion Component O Couplings

Oldham Insert POM

Spacer

Material : Polycetal (POM)

Dimen	sions	ØD1	т	(042)	14/	7	Coupling	
Model No.	ØD	ועש	I	003	vv	2	Coupling	
	16	16	12	7	8	4.5	FAMN16 FACPL16	
	20	20	15	9	10	5.5	FAMN20 FACPL20	
FA-PB	25	25	18	11	12	6.5	FAMN25 FACPL25	
	32	32	21	14.5	15	7.5	FAMN32 FACPL32	
	40	40	18	17	19	7.5	FAMN40 FACPL40	
							FA-PB 32	

Model no. ØD

FA-PG

Spacer

 Space 	er					Material : F	Polycetal (POM)	
Dimensions			т	(Xd2)	10/	7	Coupling	
Model No.	ØD	וטש	I	Dus	VV	2	Couping	
	12	12	4.9	6	4	2.5	FACPS12	
	16	16	7	8	5	3.5	FACPS16	
FA-PG	20	20	8	10	7	4	FACPS20	
	25	25	11.2	14	9	5.5	FACPS25	
	32	32	13.3	18	10	6.5	FACPS32	
						Ordering Examp	le: FA-PG 32 Model no. ØD	

D \sim

Linear Motion Component O Couplings

Flexible | Jaw Coupling

FAME ØD=40

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Sotscrow
Spider	Urethane(PU)	_	Gersciew

★ Dimension "C", must be previously reserved while assemly by users, otherwise it would affect allowed deflection, accelerating shaft and coupling damage.

Dimensi	Dimensions			\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2														1.4	Б		F	Se	t screw
Model No.	ØD	(color selection)	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16		LI	В		F	М	Lock torque (N·m)
FAME	14	B (Blue)	•	•	•	•											22	7	6		3.5	0	0.7
	20	B (Blue)			•	•	•	•	•	•							30	10	8		5	3	0.7
	30	VV (VVIIILE)						•	•	•	•	٠	•	٠			35	11	10	1.5	5.5	4	1.7
	40	R (Red)									•	•	•	•	•	•	66	25	12	2	12.5	5	4

*Moment of inertial torque and weight calculated by maximum diameter.

													-		
Specifi	cation	AI	lowat Vrenc	ole h	A	llowat	ole Mi	salign	iment	Т	Statio	: nal	Max	* Momont	
Model No	ØD		Torqu (N∙m)	e	Angular	P	aralle (mm)		Axial) (N	Stiffne V·m/ra	ss id)	RPM	of Inertia	★ Weight (g)
	00	В	W	R		В	W	R	(mm)	В	W	R	(1/11111)	(Kg·m-)	
	14	0.7	1.2	2		0.15	0.10		+0.6 0	8	14	22	27000	2.1*10 ⁻⁷	7.3
EAME	20	1.8	3	5	1.0	0.20	0.15	0.10	+0.8 0	16	29	55	19000	1.0*10 ⁻⁶	18
FAIVIE	30	4	7.5	12.5	1.0	0.20	0.15	0.10	+1.0 0	46	73	130	13000	5.9*10 ⁻⁶	46
	40	4.9	10	17	-	0.15	0.10		+1.2 0	380	570	1200	9600	4.0*10 ⁻⁵	150

Ordering Example: FAME30	10 * 12 100 PCS
Model no.	Ød1 * Ød2 Q'ty

(R)

ød1H8

Ød1H8

Flexible | Jaw Coupling

FAMK

 Operating temperature : -20°C~60°C · Offset of angular, parallel, or axial deviation are individual allowed value, so couple reasons of axial offset appearing at same time would reduce the unit allowable value.

(R)

FAMK ØD=40

Component	Material	Accessories	
Main frame	Aluminum Alloy	Anodized	Sotscrow
Spider	Urethane(PU)	-	Sersciew

4-M

★ Dimension "C", must be previously reserved while assemly by users, otherwise it would affect allowed deflection, accelerating shaft and coupling damage.

Dimens	Dimensions		Ø	d1&Ød2	2 selecti	on *Ø	$id1 \leq Q$	ðd2		14	Р	6	F	Se	et screw
Model No.	ØD	(color selection)	10	11	12	14	15	16		LI	В		F	М	Lock torqu (N·m)
FAMK -	30	B (Blue)	•	•	•	•			35	11	10	1.5	5.5	4	1.7
	40	W (White) R (Red)	٠	•	٠	٠	•	•	66	25	12	2	12.5	5	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	Specification				A	llowat	ole Mi	salign	ment	Т	Statio	; nal	Max	* Momont	
Model No	ØD	_ Torque (N⋅m)		ie)	Angular	P	aralle (mm)	I	Axial	S (1	Stiffne N∙m/ra	ss ad)	RPM (r/min ⁻¹)	of Inertia	★ Weight (g)
woder no.	עש	В	W	R		В	W	R	(11111)	В	W	R	(1/11111)	(kg·m-)	
FAMK	30	4	7.5	12.5	10	0.20	0.15	0.10	+1.00 0	46	73	130	5100	5.8*10 ⁻⁶	45
	40	4.9	10	17	1.0	0.15	0.10	0.10	+1.20	380	570	1200	3800	3.8*10 ⁻⁵	150

©FAME&FAMK spider selection and installation remark please refer to P.55

Linear Motion Component O Couplings

(B)

(W)

(R)

Flexible | Jaw Coupling

FACE

____.

 \bigcirc

Ød1H8

FACE ØD=40

 Operating temperature : -20°C~60°C
 Offset of angular, parallel, or axial
deviation are individual allowed value, so
couple reasons of axial offset appearing at
same time would reduce the unit allowable
value.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Spider	Urethane(PU)	-	Clamping Screw

★ Dimension "C", must be previously reserved while assemly by users, otherwise it would affect allowed deflection, accelerating shaft and coupling damage.

Dimens	Dimensions Spider			\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2														14	Б	6	F	Δ	Clamp	oing screw
Model No.	ØD	(color selection)	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	L	LI	D	C	Г	A	М	Lock torque (N·m)
FACE	14	B (Blue)	•	•	•												22	7	6	1	3.5	4	2	0.5
	20	W (White)			•	•	•	•	٠								30	10	8		5	6.5	2.5	1
	30	VV (VVIIILE)						•	٠	•	•	•	•				35	11	10	1.5	5.5	10	4	2.5
	40	R (Red)									٠	٠	•	٠	٠	٠	66	25	12	2	8.5	14	5	4

Specific	cation	A	lowat	ole	A	llowat	ole Mi	salign	ment	т	Static				
Model No	ØD		Torqu (N∙m	ie)	Angular	F	Paralle (mm)	el	Axial	(N	Stiffnes V·m/ra	ss d)	Max. RPM	 Moment of Inertia (kg m²) 	★ Weight (g)
model He.	00	В	W	R		В	W	R	(((((((((((((((((((((((((((((((((((((((В	W	R		(Kg·III-)	
	14	0.7	1.2	2		0.15	0.10		+0.6 0	8	14	22	11000	1.6*10 ⁻⁷	6
EACE	20	1.8	3	5	1.0	0.20	0.15	0 10	+0.8 0	16	29	55	7600	1.1*10 ⁻⁶	19
FACE	30	4	7.5	12.5	1.0	0.20	0.20 0.15		+1.0 0	46	73	130	5100	6.2*10 ⁻⁶	50
	40	4.9	10	17		0.15	0.10		+1.2 0	380	570	1200	3800	3.9*10 ⁻⁵	160

Linear Motion Component O Couplings

Ød1H8

201HB

Flexible | Jaw Coupling

FACK ØD=14.20.30

(R)

 Operating temperature : -20°C~60°C · Offset, deflection, shaft deviation are individual allowed values, so axial offsets in all reasons appearing at same time

would reduce values.

Component	Material	Surface Finish	Accessories
Main frame	Aluminum Alloy	Anodized	Clamping scrow
Spider	Urethane(PU)	_	Clamping Sciew

Dimension "C", must be previously reserved while assemly by users, otherwise it would affect allowed deflection, accelerating shaft and coupling damage.

Dimens	Dimensions		Ø	0d1&Ød	2 select	tion *(Ød1 ≦	Ød2		14	Б	6	F	_	Clam	ping screw
Model No.	ØD	(color selection)	10	11	12	14	15	16			D			A	М	Lock torque (N·m)
FACK	30	B (Blue)	٠	•	٠				35	11	10	1.5	5.5	10	4	2.5
FACK	40	R (Red)	•	•	•	٠	•	•	66	25	12	2	8.5	14	5	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	ration	AI	llowat	ole	A	llowat	ole Mi	saligr	iment		Static	; al			
Model No		Torque (N·m)		ie)	Angular	Angular (mm)		Axial	kial (N·m/rad)			Max. RPM	 Moment of Inertia (ka m²) 	★ Weight (g)	
model No.	00	В	W	R		В	W	R	(mm)	В	W	R	(1/11)	(kg·m²)	
EACK	30	4	7.5	12.5	1.0	0.20	0.15	0.10	+1.0 0	46	73	130	5100	4.2*10 ⁻⁶	50
FACK	40	4.9	10	17	1.0	0.15	0.10	0.10	+1.2	380	570	1200	3800	3.7*10 ⁻⁵	160

©FACE&FACK spider selection and installation remark please refer to P.55

ing Example:	FACK30		10	 12	100 PCS	
ing Example.	Model no.	1	Ød1	Ød2	Q'ty	

Linear Motion Component O Couplings

Flexible | Jaw Coupling

(R)

FACE D=55,65,80

Component	Material	Surface Finish	Accessories
Main frame	AL6061T651	Anodized	Clamping
Spider	Urethane(PU)	—	Clamping

Key way		W		Н	Key way dimension W	
Ød1 . Ød2	Dimension	Alloable tolerance	Dimension	Alloable tolerance		
6~7	2	+0.015	1.0		2*2	
8~10	3	±0.015	1.4		3*3	
11~12	4		1.8		4*4	
13~16	5	±0.02	2.3	±0.1	5*5	
18~22	6		2.8		6*6	
24~30	8	+0.025	2.0		8*8	
32~42	10	10.020	3.3		10*10	

Siz	е	Spider		Ød	11&Ød2	options * Øc	d1≦Ød	12								Clampi	ng screw
Model	ØD	Elestic strength (Color)	16	20	24	32	35	40	42	L	L1	B	С	F	A	М	Lock Torque (N.m)
	55		•	•	•					78	30	14	2	10.5	20	M6	10.5
FACE	65	92sh A(W) 98sh A(R)	٠	•	•	•	•			90	35	15	2.5	11.5	25	M8	25
1	80	303174(11)	•	•	•	•	•	•	•	114	45	18	3	15.5	25	M8	30

Specif	ications	Allowabl (N	e Torque ∙m)	Allowable Angle Mis-	Allowabl Mis-align	e Parallel ment (mm)	Allowable Axile Mis-	Static to stiffness (orsional N.m/rad)	Max. RPM	Moment of inertia	Weight
Model	ØD	R	W	alignment	R	W	(mm)	R	W		(kg∙m)	(9)
	55	60	35				1.2	2600	1600	8650	1.6*10 ⁻⁴	330
FACE	65	160	95	0.9°	0.1	0.1	1.2	4900	3000	7350	3.8*10 ⁻⁴	560
	80	325	190]			1.2	6500	5300	5950	1.0*10 ⁻³	560

Flexible | Jaw Coupling

SF TECHNOLOGY CO...LTC

Specifications		Allowable Torque (N·m)		Allowable Angle	Parallel Misalignment (mm)		Allowable Axile Misalignment	Static Torsional Stiffness (N·m/rad)		Max. RPM (r/min ⁻¹)	Moment of Inertia (kg⋅m)	Weight (q)
Model	ØD	R	W	modigrimorit	R	W	(mm)	R	W			(0)
	55	60	35				1.2	2600	1600	6950	1.91*10 ⁻⁴	399
FCSE	65	160	95	0.00	0.1	0.1	1.2	2600	1600	5850	4.18*10 ⁻⁴	592
TOOL	80	325	190	0.5	0.1	0.1	1.2	4900	3000	4758	12.9*10 ⁻⁴	1225
	95	450	265				1.2	2600	1600	4000	31.7*10-4	2300

Key way dimensions

Ød1&Ød2

Jaw Spider

Model No.	ØD	Cou	pling	Shape diagram	Colour	Hardness JIS A (Shore A standard)
	14	FAME14	FACE14	*		
ES-B	20	FAME20	FACE20	83	B= Blue	B=80
FS-W FS-R	30	FAME30 FACE30	FAMK30 FACK30		W= White R= Red	W=92 R=98
	40	FAME40 FACE40	FAMK40 FACK40	*** ***		

Spiders are available used for set screw type and clamping type.

- Larger hardness has better sensibility in angular transmission. Smaller hardness has better vibration absorbability.
- Additional remark of installation of Flexible couplings integrated with Jaw Spiders :

Flexible couplings (integrated with Jaw Spiders), model number FAME, FAMK, FACE, FACK series need to reserve "C" dimension while assembling.

This would ensure coupling the function and usage life of Jaw Spiders, as well as keeping isoltion feature of the coupling.

TECHNOLOGY COLLTC

Polyacetal(Abbr. POM), also called Plastic steel.

POM character : Polyoxymethylene is a kind of thermal plasticity polymer, having good physical, mechanical and chemical functions. It has high hardness, rigidity in very wide range of temperature. Secondarily, resisted strength, fatigue resistance, creep resistance are excellent as well, especially outstanding dimension stability and durability; besides, polyoxymethylene has advantages of small friction factor, good durability, dispens-able lubricant, good organci solvent-resistance, low absorbent ability etc..., Long-term using in the range of -40~104°C. In addition, polyoxymethylene has better corro-sion resistance.

Urethane(PU)

PU glue is also called polyurethane

Polyurethane application is kind of flexible polymer, used as elastic resilience and damping in shock absorber. Generally, polyurethane suits for terrains with collision from small to medium level most, and adjustable polyurethane makes perfect effect. Urethane glue is water-resistant, abrasion-resist, high mechanism strength, and product hardness adjusted by purposes, high elasticity, good shock absorbability, no hurting machine tools, a excelent anti-collision material,

Highly wear-resisting copper alloy

Highly wear-resisting copper alloy(aluminum bronze(C6161)) High tensile-resist strength, wear-resistance, and offer various extruded materials, forged materials, centrifugal rolls, and applied to gear, bearing, bushing, slide panel, plastic mould, electrode heads....etc.

Character chart for plastic material

	Material Specific gravity		Thermal distortion	Flammability	Feat	Purpose	
		gravity	temperature		Advantage	Defect	
					1. Tough flexible	1. Low anti-ultraviolet	1. Parts in industry load
					 CLIP character excelent fatigue resistance 	 Heat dissolution and formald- ehyde gas produced 	2. Automobile > electric parts
	POM	1.14 ~ 1.43	Homopolymer	Flammable	 Self-lubricity, low abrasion- resistance 	3. Low anti-acid	3. toy parts
					4. Drug tolerance		4. Substitute for metal
					5. Good heat-resistance		
					1. Good abrasion-resistance	 Softness in low level , easily stuck while demolding and shrink. 	1. Shoes and sports utilities
					 Climate-resistant and low temperature-resistant (-35°C~50°C) 	2. Long dried time for materials	 Shock absorb, noise elimination, bushing
	PU 1.11 ~ 1.2		point	Flammable	3. anti-oxygen, ozone aging characters		 Grip and grasp with soft-touch feeling
			-	-	4. Good tensile rate of bending strength		
					5. Adjustable toughness		

Remark of plastic spacer corrosponding to environment temperature.

Plastic spacer series include rubber or plastic parts. These model no, must be used in operating temperature range indicated on our catalogs. If temperature over 30°C, max. torque and allowable torque shall be corrected by factors as listed below.

Environment temperature	Corrective factor
-20°C ~ 30°C	1.00
30°C ~ 40°C	0.80
40°C ~ 60°C	0.70
60°C ~ 100°C	0.55

Linear Motion Component O Couplings

 Light, very low inertial and high sensibility. · Maintenance free, super anti-oil and corrosion-resistance.

*When Ød1<4 and Ød2>5, there would be 3 set screws. *When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Dimens	sions		$Ød1\&Ød2$ selection $*Ød1 \leq Ød2$											E	М			
Model No.	ØD	3	4	5	6	8	10	11	12	14	15	16	18	20	L	Г	IVI Rough thread	
	16	•	•	•	•										24	6	2	
	20			•	•	•	•								30	7	3	
RAM	25					•	•	•	•						36	9	4	
	32								•	•	•	•			41	10	4	
	40										•	•	•	•	44	10.5	5	

*Moment of inertial torque and weight calculated by maximum diameter.

Surface Finish

Anodized

Accessories

Set screw

Specific	cation	Allowable Wrench	Max.	* Moment	Screw Fixing	🖈 Weight
Model No.	ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg⋅m²)	Torque (N⋅m)	(g)
	16	0.3	24000	4.4*10 -7	0.7	11
	20	0.5	19000	19000 1.3*10 ⁻⁶	0.7	20
RAM	25	1	15000	3.9*10 ⁻⁶	47	39
	32	2	12000	1.2*10 -5	1.7	71
	40	4	4000	1.5*10 ⁻⁵	4	120

com.tw

www.sflinear

· Light, very low inertial and high sensibility.

Maintenance free, super anti-oil and corrosion-resistance.

Rigidity Coupling

RSM

*When Ød1<4 and Ød2>5, there would be 3 set screws. *When Ød1 and Ød2 both smaller than 4, there would be 2 set screws.

Material	Accessories
SUS303	Set screw

Dimens	sions	\emptyset d1& \emptyset d2 selection * \emptyset d1 $\leq \emptyset$ d2											-	М	
Model No.	ØD	3	4	5	6	8	10	11	12	14	15	16			Rough thread
	16	•	•	•	•								24	6	
PSM	20			•	•	•	•						30	7	3
RSM	25					•	•	•	•				36	9	4
	32								•	•	•	•	41	10	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specific	cation	Allowable Wrench	Max.	* Moment	Screw Fixing	★ Weight	
Model No.	ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg·m²)	Torque (N⋅m)	(g)	
	16	0.3	24000	1.2*10 ⁻⁶	0.7	28	
DOM	20	0.5	19000	3.5*10 ⁻⁶	0.7	54	
RSM -	25	1	15000	1.0*10 ⁻⁵	17	100	
	32 2		12000	3.1*10 ⁻⁵	1.7	190	

Linear Motion Component O Couplings

Rigidity Coupling

0.03 A

Dimens	Dimensions Ød1&Ød2 selection *Ød1 \leq Ød2										Ŧ	F	N/		
Model No.	ØD	5	6	8	10	12	14	15	16	18		A	I		Rough thread
	16	•	•								16	5		3.75	2.5
	20		•	•							20	6.5	4	4.75	
RACS	25			•	•						25	9	I	6	3
	32				•	•	•				32	11		7.75	4
	40						•	•	•	•	44	13	1.5	10.5	5

	Specific	ation	Allowable Wrench	Max.	* Moment	Screw Fixing	🖈 Weight	
Model No.		ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg⋅m²)	Torque (N⋅m)	(g)	
		16	0.3	9500	3.0*10 -7		9	
		20	0.5	7600	8.7*10 ⁻⁷	1	15	
	RACS	25	1	6100	2.7*10 -6	1.5	29	
		32	2	4800	7.1*10 ⁻⁶	2.5	61	
		40	4	4000	1.5*10 ⁻⁵	7	120	

Linear Motion Component O Couplings

Rigidity Coupling

RSCS

· Light, very low inertial and high sensibility. Maintenance free, super anti-oil and corrosion-resistance. · Beam type with no allowable offset almost, please show the axis entirely in operating.

Accessories SUS303 Clamping screw

Dimen	sions		Ød1&0	Ød2 selecti	on *Ød1	$\leq Ød2$			Δ	-	_	M
Model No.	ØD	5	6	8	10	12	14		A	I	Г	IVI Rough thread
	16	•	•					16	5		3.75	2.5
Dece	20		•	•				20	6.5	1	4.75	2.0
KSC3	25			•	•			25	9		6	3
	32				•	•	•	32	11]	7.75	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specifica Madal Na	cation	Allowable Wrench	Max.	* Moment	Screw Fixing	★ Weight
Model No.	ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg·m ²)	Torque (N⋅m)	(g)
	16	0.3	9500	8.0*10 -7	1	22
Dece	20	0.5	7600	2.4*10 -6		41
RSCS	25	1	6100	7.3*10 ⁻⁶	1.5	80
	32	2	4800	2.5*10 -5	2.5	160

Linear Motion Component O Couplings

Rigidity Coupling

*Ød1&Ød2 tolerance are defined before machining.

Material	Surface Finish	Accessories			
Aluminum Alloy	Anodized	Clamping screw			

Dimensions \emptyset d1& \emptyset d2 selection* \emptyset d1 \leq \emptyset d2										-	M
Model No.	ØD	5	6	8	10	12	14		A	F	IVI
	16	•	•					16	5	4	2.5
	20		•	•				20	6.5	5	2.5
KAD	25			•	•			25	9	6	3
	32				•	•	•	32	11	8	4

Specifica Model No.		cation	Allowable Wrench	Max.	* Moment	Screw Fixing	★ Weight
		ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg·m ²)	Torque (N⋅m)	(g)
		16	0.3	9500	3.2*10 ⁻⁷		8.8
		20	0.5	7600	8.7*10 ⁻⁷		15
	RAB	25	1	6100	2.7*10 ⁻⁶	1.5	29
		32	2	4800	9.3*10 ⁻⁶	2.5	61

SF TECHNOLOGY CO..LTD

SFI SF TECHNOLOGY CO.,LTD

Linear Motion Component O Couplings

· Light, very low inertial and high sensibility.

Maintenance free, super anti-oil and corrosion-resistance.

· Beam type with no allowable offset almost, please show the axis entirely in operating.

Rigidity Coupling

Product Specification

RSB

*Ød1&Ød2 tolerance are defined before machining.

Material	Accessories
SUS303	Clamping screw

Dimens	sions		Ød1&Ød	2 selection	*Ød1 \leq	Ød2		L A		-	М
Model No.	ØD	5	6	8	10	12	14		A	F	IVI
	16	•	•					16	5	4	2.5
PSB	20		•	•				20	6.5	5	2.0
I NOD	25			•	•			25	9	6	3
	32				•	•	•	32	11	8	4

*Moment of inertial torque and weight calculated by maximum diameter.

Specification		Allowable Wrench	Max.	* Moment	Screw Fixing	★ Weight	
Model No.	ØD	I orque (N·m)	(r/min ⁻¹)	(kg·m²)	l orque (N⋅m)	(g)	
	16	0.3	9500	8.2*10 ⁻⁷	1	22	
DCD	20	0.5	7600	2.4*10 ⁻⁶	I	41	
K2R	25	1	6100	7.3*10 ⁻⁶	1.5	80	
	32	2	4800	2.5*10-5	2.5	160	

RSB20 6 8 100 PCS Model no. Ød1 Ød2 Q'ty 100 PCS Ordering Example

Linear Motion Component O Couplings

Rigidity Coupling

RACL

· Light, very low inertial and high sensibility. Maintenance free, super anti-oil and corrosion-resistance. . Beam type with no allowable offset almost, please show the axis entirely in operating.

*Ød1&Ød2 tolerance are defined before machining.

Material	Surface Finish	Accessories		
Aluminum Alloy	Anodized	Clamping screw		

Dimensions		$Ød1\&Ød2$ selection $*Ød1 \leq Ød2$							Δ	E4	50	NA
Model No.	ØD	5	6	8	10	12	14	L	A	FI	ΓZ	IVI
RACL	16	•	•					22	5	0.5	5.5	- 2
	20		•	•				24	7	2.5	6	
	25			•	•			36	9	4.5	9	2.5
	32				•	•	٠	40	11	4	10	3

	Specific	cation	Allowable Wrench	Max.	* Moment	Screw Fixing	★ Weight (g)	
	Model No.	ØD	Torque (N⋅m)	(r/min ⁻¹)	(kg·m ²)	Torque (N⋅m)		
		16	0.3	9000	3.4*10 ⁻⁷	0.5	10	
	BACI	20	0.5	7000	9.2*10 ⁻⁷	0.5	18	
	RACL	25	1	6000	3.4*10 ⁻⁶	1	38	
	32	2	4500	1.0*10 ⁻⁵	1.5	70		

Ordering Example:	RACL25	8	10	100 PCS
	Model no.	Ød1	Ød2	Q'ty

Rigidity Coupling

RSCL

Light, very low inertial and high sensibility.
Maintenance free, super anti-oil and corrosion-resistance.
Beam type with no allowable offset almost, please show the axis entirely in operating.

*Ød1&Ød2 tolerance are defined before machining.

Material	Accessories
SUS303	Clamping screw

Dimens	sions	$Ød1\&Ød2$ selection $*Ød1 \leq Ød2$								E4	E2	M
Model No.	ØD	5	6	8	10	12	14	L	A		F2	IVI
	16	•	•					22	5	2.5	5.5	- 2
BSCI	20		•	•				24	7		6	
RSCL	25			•	•			36	9	4.5	9	2.5
	32				•	•	•	40	11	4	10	3

*Moment of inertial torque and weight calculated by maximum diameter.

Specification		Allowable Wrench	Max.	* Moment	Screw Fixing	* Weight	
Model No.	ØD	Torque (N·m)	(r/min ⁻¹)	(kg·m²)	Torque (N⋅m)	(g)	
RSCL	16	0.3	9000	8.9*10 ⁻⁷	0.5	25	
	20	0.5	7000	2.5*10 ⁻⁶	0.5	45	
	25	1	6000	9.2*10 ⁻⁶	1	100	
	32	2	4500	2.7*10 ⁻⁵	1.5	180	

SF TECHNOLOGY CO., LTD

Precaution

Installation Precaution & Operation Precaution

Linear Motion Component O Couplings

Installation Notice :

- (1) To avoid mistakenly operating driver, please be sure to cut off main power and start installation after security confirmation.
- (2) Please clear out miscellaneous, dust and oil...etc attached on the shafts and inner of coupling. Especially for the grease with molybdenum disulfide and extreme pressure additive which affect friction factor substantially, please proceed defatting treatment entirely.
- (3) In order to perform coupling functions completely, please proceed installing as range of max. allowable offset in the spec list. Installation error in the list is top value occuring individually, so please take below half of allowed values in multiple cases into account.
- (4) Please take the ruler against to outer body while centering, with around 90° to proceed checking two departed points. Centering accuracy has huge affection to life hours of unit.
- (5) Please set safety cover after installating this product. Otherwise, it might get hurt by touching products in operating.
- (6) To lock screw, please be sure to use corrected torque wrench and refer to the torque value of clamping lock screw in the spec list to secure.
- (7) Installing by using wrong connecting ways would cause too much vibration, abnormal running or inaccurate center, overloaded defelction to damage motor, coupling...etc mechanism units. It's recommended to notice accuracy balance correction to extend unit life while assembling mechanically.

Operation Notice :

- (1) Considering safety, please set protective jacket on the turning parts of device surrounding couplings.
- (2) If allowable offset is set over limited range or too much torque, it might cause distortion of coupling possible to shorten life.
- (3) If any noise (metal sound) in running, please stop operating, and check any interference to centering and shafts, and screw loosened or not.
- (4) If load variation of device is too much, please put adhensive or adjust one level higher of coupling model to avoid screw loose.

Safety Notice :

In order to work safetly, please read description as below, and keep the instruction to recheck the points if necessary.

Following acts might cause danger or harmful damage if using mistakenly.

- For safety work, coupling and related rotating parts must be protected by covers.
 You might be hurt if touching these parts in operating.
- ◆ To avoid danger, protection device must be installed.
- Power off is necessary while assembling and disassembling.
- Lock screw and counter bore screw must be secured by using screwdriver, wrench or torque wrench fitly.
- Operating speed of product never over top speed.
- No disassembling or recombinating products.

Warning

Following acts might cause body hurt or wealth loss if using mistakenly.

- Please operate in allowable deviation range. It might cause damage of coupling if deviation is out of allowed range and probably affect coupling system badly.
- Torque produced by continuously operating can't exceed rated torque. Otherwise, coupling might be damaged, or affect coupling system badly.
- While securing, please use screws (lock screw and counter bore screw) appointed by SFT, not any ones else.
- No operating in the environment affecting products badly.
- Please stop operation of rotating machine if hearing abnormal noise. Check deviation of machine, any interference between shafts, screws loosened or not...etc.
- If the rotating machine you use operates in bigger load variation, please use antiloosen glue on screws to avoid coming off, or use one-size larger coupling.
- Please ask experts to deal with these products to avoid damage to environment while product abandon.
- Never touch coupling after completing operation. You might be burned by high temperature caused by coupling system.

Technical Information **Couplings**

4-

Technical Infoomation

Coupling Testing Facility

Coupling Testing Facility

•Exclusive use for coupling test

(1) For use durability test.(2) For mass production inspection in development process.

Coupling Test Report Test Item : General Test	SFT	Tester		2013
Model Number : FACE Type of space ring : R	Test Day	2012/02	2/13 16:4	3:47
${\sf Outer \ diameter: 40} \qquad {\sf Inner \ diameter \ d1: 10} {\sf Inner \ diameter \ d2: 10}$	(N.m)			
Test Parameger	18.00			
Deflection : -1.08° Eccentricity : -0.10 mm	14.00			
Planned testing time : 480 min 0 sec	10.00			
Forward rotation : 0 min 10 sec	6.00			
Pause: 2 sec	2.00			
Inverse rotation : 0 min 10 sec	0.0 48.0 96.0	144.0 192.0 240.0 2	288.0 336.0 384.	o 432.0 480.0 (min)
Present torgue : 16.50 (N.m)	Remark:			
Zeroed torgue : 0.00 (N.m)				
Machine operating time : 480 min 0 sec	Serial NO. 20120213-FACE40R-8			
Revolution Test : 200 rpm / min	Back to Back to Print FAUSE			STOP